Valve, Non-Pyrotechnic

« Back

Applications

The Non-Pyrotechnic Valves are most suited to one shot applications that are inaccessible and require maximum reliability such as:

  • Spacecraft fuel lines
  • Nuclear coolant valves
  • Tamper proof hydraulic valves for security applications

Key Features

  • Electrically Redundant
  • Low Shock
  • Positive Isolation
  • Available in normally closed or open configurations
  • Operating pressure between 0 to 31 MPa
  • Burst Pressure >63 MPa
  • Metal-sealed and hermetically-sealed valves are available
  • Post actuation contamination: <15 items and <25 microns
  • Predictable Actuation Times
  • Contamination free actuation
  • Hermetically sealed before and after actuation
  • Material selections compatible with flow material, gas or liquid

Overview

NEA’s highly reliable Hold Down & Release Mechanisms technology has been adapted for use in Non-Pyrotechnic Valves. The electrically redundant valves offer low shock and positive isolation with both liquid and gas lines. They are available in both normally closed and normally open configurations.

Principle of Operation

NEA Non-Pyrotechnic Valves consist of a spring-loaded plunger that is restrained using the same patented split-spool and bridge wire technology used in our Hold Down & Release Mechanisms. The spool sub-assembly includes two spool halves which are held together by a tight winding of a restraining wire that terminates in a bridge wire connecting two electrical terminals at the electrical interface to the device. The spool assembly, by virtue of the restraining wire winding, can prevent axial motion of the plunger. When sufficient electrical current is passed through the terminals and the bridge wire, the bridge wire heats up and breaks under the applied tension load. This allows the restraining wire to unwind, separating the spool halves and releasing the spring-preloaded plunger, which is directly connected to a ball and cone valve mechanism. Actuation can either separate the ball from the cone or engage the ball in the cone depending on the configuration selected.

The actuation method is simple and reliable and forms the basis of actuation for many of NEA's other products including; Battery Cell Bypass Switches and Pin Pullers.

Technical Advantages

NEA release device technology provides significant advantages.

Low Shock

There are three sources of shock with traditional pyrotechnic release devices; those include the pyrotechnic initiator and the resulting transfer of kinetic energy within the mechanism. The NEA approach eliminates both of these sources of shock. There is no pyrotechnic initiator required so there is no initial shock and the restraint wire release mechanism is also not a significant contributor to shock.

A third source of shock is the energy stored in the release rod itself as well as any of the other components that are in the preload path. The nature of NEA device's gentle release of preload allows this stored energy to be dissipated over the release event minimizing the stored energy contribution to shock as well.

Fast Acting

With respect to shock, the action of NEA devices is quite gentle yet the release event itself is still very fast. Since the bridge wire is extremely small the release event can be triggered in milliseconds. This capability allows multiple NEA devices to be used in parallel where simultaneous release is required such as large solar array panels and spacecraft stage separations.

Reliable

With simplicity comes reliability. The basic design of the NEA HDRM is very simple with a minimum of moving components. The devices are robust and not sensitive to extreme environments or contaminants. High reliability is supported both analytically and by an extensive history of successful operation in mission critical applications.

Compatible

NEA HDRM devices have been designed to work with existing pyro firing circuits. The flexibility of the design however also allows operation with lower firing current if required.

Custom Configurations

In addition to our line of standard Non-Pyrotechnic Valves NEA can provide custom configurations that include; modifications to the mechanical interface, modified housing designs, changes to lead wires, revisions to pressure capability, additional connector housings, and materials changes. NEA can also provide Non-Pyrotechnic Valves as part of a next higher assembly either built to our customer's prints or designed at NEA to our customer's specifications.

Many of our current customers rely on NEA's in-house engineering expertise to integrate our market leading split-spool Non-Pyrotechnic Valve technology into custom assemblies to improve their competitive edge.

Summary Table of Standard Non-Pyrotechnic Valve Configurations

Parameter
NPV9000 Capability
Burst Pressure (5 minutes)
63.4 MPa (9,200 psi)
Maximum Operational Pressure
31 MPa (4,500 psi)
Minimum Operational Pressure
0 MPa (0 psi)
Minimum Actuation Current1
2 A
Actuation Time2
30 ms
Cold Temperature Limit
-257°C (16 K)
Hot Temperature Limit
+160°C
Mass3
496.5 g (17.5 oz)
Notes:
1Actuation can be achieved using a range of current, the value in the table is the value used for qualifying this device.
2Actuation time is dependent on actuation current, contact applications engineering for more specific information on actuation time as a function of current.
3Mass does not include harnessing and lead wires.